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ABSTRACT

This paper presents closed form design equations

for the phase constant of unilateral finlines with finite

metallization thickness and arbitrarily located slots.

The equations are based on numerical data obtained

using the highly accurate conservation of complex

power technique.

L INTRODUCTION

There has been a number of numerical methods

for computing the phase constant of finlines [1,2,3]

which assume the fin thickness to be negligible. Such

an assumption is valid for most practical purposes. As

a result closed form design equations were developed

based on this assumption [4].

Recently, it has been pointed out that the

assumption of zero fin thickness is invalid for

extremely narrow fingaps, high substrate dielectric con-

stants and sufficiently fhite thicknesses [5,6]. With the

use of a highly accurate method based on the conserva-

tion of complex power technique (CCPT) [7], we have

thoroughly investigated the effect of the metallization

thickness on the finline performance and have found

that the error of neglecting the fln thickness can go as

high as 7 percent. In the present work we have

presented highly accurate models for the cutoff

wavelengths in unilateral finlines over the range (see

Fig.1) c,<4.0, t/cI< 0.02094, l/64< s/a <1/8 and

1/32 <dfl <1/2. The expressions derived are accurate

to within +0.8 percent of numerical results. Using ‘he

expressions for the cutoff wavelength, the dominant

mode propagation constant can

percent of numerical results.

be evaluated within 1.3

Q-41

II. CLOSED FORM EQUATIONS

FOR THE PHASE CONSTANT

the phase constant is given by

where X.

dielectric

P = * w]+ (1)
o

is the free space wavelength and the effective

constant ●,(f) is obtained from

‘e(f) = ‘e(f) – (k.Ac.)z (2)

A ,. the cutoff wavelength of the homogeneous finline,

is given by

{

,+
XC. =2 (a–t) l+NX+ (2.75+0.2 tla)[ti(a–~)] Vdj (3)

N=(4\rT) (1+0.2 [b/’(a-t)]1/2) (b/(a–t)) (41.a)

X=–in sin (0.5md/b) (4 .b)

ICC(f), the frequency dependent equivalent dielectric

constant, is obtained from

(er–lc,)
k,(j) == ‘S, –

{

(5)

T’ “’2!1+006’”)
1+ :[—

where k,, the value of k,(f) at the cutoff frequency fe

of the fhline, is given by

k, = 1 + :(alx+bl) (,,–1) (6)

and

al = PO + pl ln~ + P2 (ln~)z

bl = q, + ql ln~ + q2(h~)2
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PO = 2.455–69.366 (t/a) +1826.189 (t/u)2

Pl = 2.5646 + 54.2675 (t/’a)-l38l.6 (t/’)2

P2 = 0.7837 – 18.954 (t/’a) + 466.3185 (t/’a)z

q, = 2.1697 + 3.638 (t/a) + 240.356 (t/’)z

ql = 3.4661 – 7.3661 (t/a) –180.6 (t/a)z

qz = -0.6149 + 3.11624 (t/a) +19.605 (t/a)2

The equation for the phase constant is valid within the

range of the fundamental mode operation. The error

may be in the order of +2 percent outside this range.

For non centered fingaps in the y direction the param-

eter X has to be replaced by [8]

{
X=ln c0.sec(0.5rrd/b).cosec(0.5m (l-2efi))

}

Where e is the distance of the center of the fingap

from the center of the housing.

Table I compares the computed results using the above

equations, with those obtained using the numerical

technique. Although the above equations are valid for

dfl up to 1/2, the effect of the finite metallization

thickness is almost negligible for dfl >0.35. Moreover

the upper bound of t/a (i.e. 0.02094) is rarely encoun-

tered in practice. Figures 2 and 3 compare the com-

puted results for the propagation constant and the

agreement inspires confidence in the above models.

The equation suggested for characteristic

impedance is based on Meier’s homogeneous ridged

waveguide definition [9] and is given by

){ W&}z.(f) =@Mm (7)

(8)

where

(10)

[
f, = 7r(a-t)/2kCc – ~sin’(a –t)T/lCa

1

(11)

III CONCLUSION

This paper presents simple but accurate models

for the phase constant and characteristic impedance in

unilateral finlines with finite metallization thickness

and arbitrarily located slots. The use of the models

does not need any solution of transcendental equations

and are simple enough to be programmed in a pocket

calculator.
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Fig. 1. Unilateral Finline
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Fig. 2. The equivalent dielectric constant versus frequency

for different slot widths, a=2b=4.7752 mm,

s= O.127 mm, h1=2.3876 mm, t= O.lmm.
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Fig. 3. Comparison with the CCPT technique,

a=2b=4.77ij2 mm, s= O.127 mm, h1=2.3876 mm,

(a) 6,=2.2, (b) er=3.8.
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